树状图 - 连续事件的概率计算与可视化表示
树状图用于展示连续事件的结果与概率,通过"分支相乘(乘法原理)"计算联合概率,"路径相加(加法原理)"计算互斥事件的概率。
基本结构:
放回情况:每次实验的概率不变,总数不变
不放回情况:每次实验后需更新总数和对应类别数量
关键区别:不放回时顺序会影响最终概率,需要考虑实验的先后顺序
结合树状图的分支概率,利用公式 \( P(B|A) = \frac{P(A \cap B)}{P(A)} \) 计算条件概率。
计算方法:
绘制步骤:
概率标注:每个分支上标注该分支的条件概率
A bag contains seven green beads and five blue beads. A bead is taken from the bag at random and not replaced. A second bead is then taken from the bag.
Find the probability that:
a) both beads are green
b) the beads are different colours.
a) 两颗珠子都是绿色
第一步取绿珠概率 \( \frac{7}{12} \),不放回后剩6绿11珠,第二步取绿珠概率 \( \frac{6}{11} \)。
联合概率:\( \frac{7}{12} \times \frac{6}{11} = \frac{7}{22} \)。
b) 珠子颜色不同
不同颜色分"绿后蓝"和"蓝后绿"两种情况:
总概率:\( \frac{35}{132} + \frac{35}{132} = \frac{35}{66} \)。
The turnout of spectators at a Formula 1 race is dependent upon the weather. On a rainy day, the probability of a big turnout is 0.4, but if it doesn't rain, the probability of a big turnout increases to 0.9. The weather forecast gives a probability of 0.75 that it will rain on the day of the race.
a) Draw a tree diagram to represent this information.
b) Find the probability that there is a big turnout and it rains.
c) Find the probability that there is a big turnout.
a) 树状图结构
第一分支:雨(R)概率0.75,不雨(R')概率0.25。
雨的后续分支:大 turnout(B)0.4,不大(B')0.6;
不雨的后续分支:大 turnout(B)0.9,不大(B')0.1。
b) 大 turnout且下雨的概率
联合概率:\( P(B \cap R) = P(B|R) \times P(R) = 0.4 \times 0.75 = 0.3 \)。
c) 大 turnout的概率
大 turnout概率为"雨且大"加"不雨且大":
\( P(B) = 0.3 + (0.25 \times 0.9) = 0.525 \)。
A bag contains 6 green beads and 4 yellow beads. A bead is taken from the bag at random, the colour is recorded and it is not replaced. A second bead is then taken from the bag and its colour recorded. Given that both beads are the same colour, find the probability that they are both yellow.
步骤1:计算同色的概率
同绿:\( \frac{6}{10} \times \frac{5}{9} = \frac{30}{90} \)
同黄:\( \frac{4}{10} \times \frac{3}{9} = \frac{12}{90} \)
同色总概率:\( \frac{30 + 12}{90} = \frac{7}{15} \)。
步骤2:计算条件概率
\( P(\text{同黄} | \text{同色}) = \frac{\frac{12}{90}}{\frac{42}{90}} = \frac{2}{7} \)。
基本规则:
标注规范:
计数更新:
计算示例:
概率不变:
计算示例:
受限路径:
计算公式:\( P(B|A) = \frac{P(A \cap B)}{P(A)} \)